124 research outputs found

    On the Rapid Increase of Intermittency in the Near-Dissipation Range of Fully Developed Turbulence

    Full text link
    Intermittency, measured as log(F(r)/3), where F(r) is the flatness of velocity increments at scale r, is found to rapidly increase as viscous effects intensify, and eventually saturate at very small scales. This feature defines a finite intermediate range of scales between the inertial and dissipation ranges, that we shall call near-dissipation range. It is argued that intermittency is multiplied by a universal factor, independent of the Reynolds number Re, throughout the near-dissipation range. The (logarithmic) extension of the near-dissipation range varies as \sqrt(log Re). As a consequence, scaling properties of velocity increments in the near-dissipation range strongly depend on the Reynolds number.Comment: 7 pages, 7 figures, to appear in EPJ

    Comment on "Turbulent heat transport near critical points: Non-Boussinesq effects" (cond-mat/0601398)

    Get PDF
    In a recent preprint (cond-mat/0601398), D. Funfschilling and G. Ahlers describe a new effect, that they interpret as non-Boussinesq, in a convection cell working with ethane, near its critical point. They argue that such an effect could have spoiled the Chavanne {\it et al.} (Phys. Rev. Lett. {\bf 79} 3648, 1997) results, and not the Niemela {\it et al.} (Nature, {\bf 404}, 837, 2000) ones, which would explain the differences between these two experiments. We show that:-i)Restricting the Chavanne's data to situations as far from the critical point than the Niemela's one, the same discrepancy remains.-ii)The helium data of Chavanne show no indication of the effect observed by D. Funfschilling and G. Ahlers.Comment: comment on cond-mat/060139

    High-Rayleigh-Number Convection in a Vertical Channel

    Get PDF
    See Also * Phys. Rev. Focus 17, story 9International audienceWe measure the relation between convective heat flux and temperature gradient in a vertical channel filled with water, the average vertical mass flux being zero. Compared to the classical Rayleigh-Bénard case, this situation has the advantage of avoiding plates and, thus, their neighborhood, in which is usually concentrated most of the temperature gradient. Consequently, inertial processes should control the convection, with poor influence of the viscosity. This idea gives a good account of our observations, if we consider that a natural vertical length, different from the channel width, appears. Our results also suggest that heat fluxes can be deduced from velocity measurements in free convective flows. This confers to our results a wide range of applications

    Ultimate regime in Rayleigh-Bénard convection: The role of plates

    Get PDF
    International audienceThe ultimate regime of convection, long ago predicted by Kraichnan ͓Phys. Fluids 5, 1374 ͑1962͔͒, could be called elusive because some apparently equivalent experiments showed it while others did not, with no apparent reasons for this discrepancy. In this paper, we propose a model which accounts for the finite heat conductivity and heat capacity of real active boundaries. Bad thermal characteristics of the plates can explain differences between various experiments, in agreement with recent numerical simulations

    Structure microscopique et dynamique des vortex dans un superfluide dense

    Get PDF
    L étude des vortex trouve sa justification dans le rôle que ces derniers jouent dans la turbulence quantique. L équation de Gross-Pitaevskii ne peut pas nous permettre de modéliser convenablement l Hélium superfluide, mais on peut l utiliser pour obtenir le paramètre d'ordre d un superfluide modèle, ayant le maximum de propriétés en commun avec l Hélium, notamment une courbe de dispersion identique, par la modification du terme d interactions.En supposant que le minimum roton influence l essentiel de la physique, on détermine la forme du paramètre d ordre loin de la perturbation créée par le vortex rectilinéaire axisymétrique par deux approches différentes - il apparaît alors que seuls deux paramètres sont nécessaires pour caractériser entièrement le profil.Le modèle proposé par Pomeau-Rica, qui offre la possibilité d étudier le superfluide près de la cristallisation, met en lumière l impact de la profondeur du minimum roton sur l amplitude des oscillations. Par comparaison avec les résultats obtenus ab initio par Reatto, les résultats donnés par le modèle de Berloff-Roberts exhibent un déphasage marqué, qui semble être une conséquence non-physique de la forme du spectre d excitation. Les calculs énergétiques laissent à penser que les oscillations portent une faible fraction de l énergie du vortex, l'énergie cinétique dominant.Le calcul du paramètre d ordre est effectué pour un anneau de grande taille par rapport à la distance interatomique, à vitesse nulle et à vitesse non-nulle. La détermination des énergies potentielle et cinétique permet d accéder à la vitesse maximale atteinte par l anneau en fonction de son rayon et de la comparer à la vitesse critique de Landau.Vortices study's justification lays in the fact that those former play an important part in quantum turbulence. The Gross-Pitaevskii equation can't be a proper model for superfluid helium, but we can still use it to determine the order parameter of a theoretical superfluid, which has then the maximum amount of properties in common with liquid helium, and in particular, the same dispersion relation, thus gained by modifying the interaction terms.We then make the assumption that all the physical properties of the superfluid are triggered by the existence of the roton minimum, which allows us to calculate the order parameter far from the perturbation created by an axisymmetric rectilinear vortex, using two different methods. At that point, it appears that only two parameters are needed to fully characterize vortex profil.Pomeau-Rica's model offers the possibility to study the superfluid near crystallization and reveals the influence of the roton minimum's shape and depth on oscillations' amplitude. Results are subsequently compared to those given by Reatto's ab initio calculations. In Berloff-Roberts' model, profil displays a strong phase shift, which seems to be a non-physical consequence of the dispersion relation's shape at high frequencies. Energies reckoning leads us to think that oscillations carry a small fraction of the total vortex' energy, meaning that the kinetic energy is dominant.The order parameter for a vortex ring, whose radius is much larger than the interatomic distance, is calculated at zero and nonzero speed. Potential and kinetic energies are estimated and help us obtain the maximal speed reached by such a ring, depending on its radius and finally discussed this speed in regard to the Landau critical speed.LYON-ENS Sciences (693872304) / SudocSudocFranceF

    Convection in a vertical channel

    Get PDF
    International audienceThe flow generated by heat convection in a long, vertical channel is studied by means of particle imagery velocimetry techniques, with the help of the thermal measurements from a previous paper (Gibert et al 2009 Phys. Fluids 21 035109). We analyse the mean velocity profiles and the Reynolds stresses, and compare the present results with the previous ones obtained in a larger cell and at a larger Reynolds number.We calculate the horizontal temperature profile and the related horizontal heat flux. The pertinence of effective turbulent diffusivity and viscosity is confirmed by the low value of the associated mixing length. We study the one-point and two-point statistics of both velocity components. We show how the concept of turbulent viscosity explains the relations between the local probability density functions (pdf) of fluctuations for temperature, vertical and horizontal velocity components. Despite the low Reynolds number values explored, some conclusions can be drawn about the small scale velocity differences and the related energy cascade

    Heat convection in a vertical channel : Plumes versus turbulent diffusion

    Get PDF
    11 pagesInternational audienceFollowing a previous study [Gibert , Phys. Rev. Lett. 96, 084501 (2006)], convective heat transfer in a vertical channel of moderate dimensions follows purely inertial laws. It would be therefore a good model for convective flows of stars and ocean. Here we report new measurements on this system. We use an intrinsic length in the definition of the characteristic Rayleigh and Reynolds numbers. We explicit the relation between this intrinsic length and the thermal correlation length. Using particle imaging velocimetry, we show that the flow undergoes irregular reversals. We measure the average velocity profiles and the Reynolds stress tensor components. The momentum flux toward the vertical walls seems negligible compared to the shear turbulent stress. A mixing length theory seems adequate to describe the horizontal turbulent heat and momentum fluxes, but fails for the vertical ones. We propose a naive model for vertical heat transport inspired by the Knudsen regime in gases

    Prandtl and Rayleigh numbers dependences in Rayleigh Bénard convection

    Get PDF
    International audienceUsing low-temperature gaseous helium close to the critical point, we investigate the Prandtl-number dependence of the effective heat conductivity (Nusselt number) for a 1/2 aspect ratio Rayleigh-Bénard cell. Very weak dependence is observed in the range 0.7 < Pr < 21; 2 × 10^8 < Ra < 2 × 10^10: the absolute value of the average logarithmic slope δ = (∂ln Nu/∂ln Pr)Ra is smaller than 0.03. A bimodality of Nu, with 7% difference between the two sets of data, is observed, which could explain some discrepancies between precise previous experiments in this range

    Comparison between rough and smooth plates within the same Rayleigh-Bénard cell

    Get PDF
    International audienceIn a Rayleigh-Bénard cell at high Rayleigh number, the bulk temperature is nearly uniform. The mean temperature gradient differs from zero only in the thin boundary layers close to the plates. Measuring this bulk temperature allows to separately determine the thermal impedance of each plate. In this work, the bottom plate is rough and the top plate is smooth; both interact with the same bulk flow. We compare them and address in particular the question whether the influence of roughness goes through a modification of the bulk flow
    corecore